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Those who have not wandered amidst the mineralogical departments of natural
history museums are often surprised to learn that metals, like most other solids, are
crystalline, for although one is used to the very obvious crystalline features of quartz,
diamond, and rock salt, the characteristic plane faces at sharp angles with one another
are absent from metals in their most commonly encountered forms. However, those
metals that occur naturally in the metallic state are quite often found in crystalline
forms, which are completely disguised in finished metal products by the great mal-
leability of metals, which permits them to be fashioned into whatever macroscopic
shape one wishes.

The true test of crystallinity is not the superficial appearance of a large specimen,
but whether on the microscopic level the ions are arranged in a periodic array.!
This underlying microscopic regularity of crystalline matter was long hypothesized
as the obvious way to account for the simple geometric regularities of macroscopic
crystals, in which plane faces make only certain definite angles with each other. It
received direct experimental confirmation in 1913 through the work of W. and
L. Bragg, who founded the subject of X-ray crystallography and began the inves-
tigation of how atoms are arranged in solids.

Before we describe how the microscopic structure of solids is determined by X-ray
diffraction and how the periodic structures so revealed affect fundamental physical
properties, it is useful to survey some of the most important geometrical properties
of periodic arrays in three-dimensional space. These purely geometrical consider-
ations are implicit in almost all the analysis one encounters throughout solid state
physics, and shall be pursued in this chapter and in Chapters 5 and 7. The first of
many applications of these concepts will be made to X-ray diffraction in Chapter 6.

BRAVAIS LATTICE

A fundamental concept in the description of any crystalline solid is that of the Bravais
lattice, which specifies the periodic array in which the repeated units of the crystal
are arranged. The units themselves may be single atoms, groups of atoms, molecules,
ions, etc,, but the Bravais lattice summarizes only the geometry of the underlying
periodic structure, regardless of what the actual units may be. We give two equivalent
definitions of a Bravais lattice?:

(a) A Bravais lattice is an infinite array of discrete points with an arrangement and
orientation that appears exactly the same, from whichever of the points the
array is viewed.

(b) A (three-dimensional) Bravais lattice consists of all points with position vectors
R of the form

R = n,a, + n;a; + n;3a;, 4.1)

! Often a specimen is made up of many small pieces, each large on the microscopic scale and con-

taining large numbers of perodically arranged ions. This “polycrystalline™ state is more commonly
encountered than a single macroscopic crystal, in which the periodicity is perfect, extending through the
entire specimen.

*  Why the name Bravais appears is explained in Chapter 7.



Bravais Lattice 65

where a,, a,, and a, are any three vectors not all in the same plane, and n,,
nz, and n3 range through all integral values.® Thus the point Zn;a; is reached by
moving n; steps* of length ¢, in the direction of a; fori= 1,2 and 3.

The vectors a, appearing in definition (b) of a Bravais lattice are called primitive
vectors and are said to generate or span the lattice.

It takes some thought to see that the two definitions of a Bravais lattice are equiva-
lent. That any array satisfying (b) also satisfies (a) becomes evident as soon as both def-
initions are understood. The argument that any array satisfying definition (a) can
be generated by an appropriate set of three vectors is not as obvious. The proof
consists of an explicit recipe for constructing three primitive vectors. The construction
is given in Problem 8a.

* . op ®  Figured.l
A general two-dimensional Bravais lattice of no
particular symmetry: the oblique net. Primitive
Qe . . vectors a, and a, are shown. All points in the net are
linear combinations of these with integral coefficients;
a, for example, P = a, 4 2a,, and Q= —a, +a,

aH

Figure 4.1 shows a portion of a two-dimensional Bravais lattice.5 Clearly definition
(a) is satisfied, and the primitive vectors a, and a, required by definition (b) are
indicated in the figure. Figure 4.2 shows one of the most familiar of three-dimensional
Bravais lattices, the simple cubic. It owes its special structure to the fact that it can
be spanned by three mutually perpendicular primitive vectors of equal length.

Figure 4.2

A simple cubic three-dimensional Bravais lattice. The three
primitive vectors can be taken to be mutually perpendicular,
and with 2 common magnitude.

3 We continue with the convention that “integer” means a negative integer or zero, as well as a

positive integer.

*  When nis negative, n steps in a direction means n steps in the opposite direction. The point reached
does not, of course, depend on the order in which the ny + n; + n; steps are taken.

* A two-dimensional Bravais lattice is also known as a net
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Figure 4.3

The vertices of a two-dimensional honeycomb
do not form a Bravais lattice. The array of
points has the same appearance whether viewed
from point P or point 0. However, the view
from point R is rotated through 180 .

It is important that not only the arrangement, but also the orientation must
appear the same from every point in a Bravais lattice. Consider the vertices of a
two-dimensional honeycomb (Figure 4.3). The array of points looks the same when
viewed from adjacent points only if the page is rotated through 180° each time one
moves {rom one point to the next. Structural relations are clearly identical, but not
orientational relations, so the vertices of a honeycomb do not form a Bravais lattice.
A case of more practical interest, satisfying the structural but not the orientational
requirements of definition (a), is the three-dimensional hexagonal close-packed lattice,
described below.

INFINITE LATTICES AND FINITE CRYSTALS

Since all points are equivalent, the Bravais lattice must be infinite n extent. Actual
crystals are, of course, finite, but if they are large enough the vast majority of points
will be so far from the surface as to be unaffected by its existence. The fiction of an
infinite system 1s thus a very useful idealization. If surface effects are of interest the
notion of a Bravais lattice is still relevant, but now one must think of the physical
crystal as filling up only a finite portion of the ideal Bravais lattice.

Frequently one considers finite crystals, not because surface effects are important,
but simply for conceptual convenience, just as in Chapter 2 we placed the electron
gas in a cubical box of volume V = 3. One then generally picks the finite region
of the Bravais lattice to have the simplest possible form. Given three primitive
vectors a,, a,, and a3, one usually considers the finite lattice of NV sites to be the set
of points of the form R = mja, + n;a; + mas, where0 < ny < Ny, 0 < n; < Ny,
0 € ny < N3, and N = N,N,N ;. Thisartifact is closely connected with the general-
ization to the description of crystalline systems® of the periodic boundary condition
we used in Chapter 2.

FURTHER ILLUSTRATIONS AND IMPORTANT EXAMPLES

Of the two definitions of a Bravais lattice, definition (b) is mathematically more
precise and is the obvious starting point for any analytic work. It has, however, two

¢  We shall make particular use of it in Chapters 8 and 22.
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minor shortcomings. First, for any given Bravais lattice the set of primitive vectors
is not unique—indeed, there are infinitely many nonequivalent choices (see Figure
4.4)—and it is distasteful (and sometimes misleading) to rely too heavily on a defi-
nition that emphasizes a particular choice. Second, when presented with a particular
array of points one usually can tell at a glance whether the first definition is satisfied,
although the existence of a set of primitive vectors or a proof that there is no such
set can be rather more difficult to perceive immediately.

Figure 4.4

L L ] L ]
o ° . Several possible choices of pairs of
. IS . primitive vectors for a two-dimen-
Vi
L] L]

L] - L ]
.
- -
o o %
L] L]
L] L] L]
..X.‘- L] L L]
Consider, for example, the body-centered cubic (bec) lattice, formed by adding to
the simple cubic lattice of Figure 4.2 (whose sites we now label 4) an additional point,
B, at the center of each little cube (Figure 4.5). One might at first feel that the center

points B bear a different relation to the whole than the corner points A. However,
the center point B can be thought of as corner points of a second simple cubic array.

sional Bravais lattice. They are
- drawn, for clarity, from different
™ origins.

Figure 4.5

A few sites from a body-centered cubic Bravais
lattice. Note that it can be regarded either as a simple
cubic lattice formed from the points 4 with the points
B at the cube centers, or as a simple cubic lattice
formed from the points B with the points A at the
cube centers, This observation establishes that it is
indeed a Bravais lattice.

In this new array the corner points A of the original cubic array are center points.
Thus all points do have identical surroundings, and the body-centered cubic lattice
is a Bravais lattice. If the original simple cubic lattice is generated by primitive vectors

ax, dy, az, @.2)
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where ®, ¥, and 2 are three orthogonal unit vectors, then a set of primitive vectors
for the body-centered cubic lattice could be (Figure 4.6)

— n3=g(x+y+z}. @.3)

Figure 4.6

Three primitive vectors, specified in Eq. (4.3),
for the body-centered cubic Bravais lattice. The
lattice is formed by taking all linear combina-
tions of the primitive vectors with integral
coefficients. The point P, for example, is P =
—a, — a; + 2a;.

bl

)

A more symmetric set (see Figure 4.7) is
a a a
31=5(?+2"R}. a;=§[2+ﬁ-—y}, 23=-i(2+y—2}. 4.4)

It is important to convince oneself both geometrically and analytically that these
sets do indeed generate the bee Bravais lattice.

Figure 4.7

A more symmetric set of primitive vectors,
specified in Eq. (4.4), for the body-
centered cubic Bravais lattice. The point
P, for example, has the form P = 2a, +
a; + a;.

Ny

E2d

Another equally important example is the face-centered cubic (fcc) Bravais lattice.
To construct the face-centered cubic Bravais lattice add to the simple cubic lattice
of Figure 4.2 an additional point in the center of each square face (Figure 4.8). For
ease in description think of each cube in the simple cubic lattice as having horizontal
bottom and top faces, and four vertical side faces facing north, south, east, and west.
It may sound as if all points in this new array are not equivalent, but in fact they are.
One can, for example, consider the new simple cubic lattice formed by the points added
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Figure 4.8
Some points from a face-centered Up
cubic Bravais lattice.
w N
s E
Down

to the centers of all the horizontal faces. The original simple cubic lattice points are
now centering points on the horizontal faces of the new simple cubic lattice, whereas
the points that were added to the centers of the north-south faces of the original cubic
lattice are in the centers of the east-west faces of the new one, and vice versa.

In the same way one can also regard the simple cubic lattice as being composed
of all points centering the north-south faces of the original simple cubic lattice, or
all points centering the east-west faces of the original cubic lattice. In either case the
remaining points will be found centered on the faces of the new simple cubic frame-
work.-Thus any point can be thought of either as a corner point or as a face-centering
point for any of the three kinds of faces, and the face-centered cubic lattice is indeed
a Bravais lattice.

A symmetric set of primitive vectors for the face-centered cubic lattice (see Figure
49)is

a a a
a, :5(?+2}’ a, =5{2+3}, a, =5(?+5’J- “.5)

Figure 4.9

A set of primitive vectors, as given in Eq. (4.5),
for the face-centered cubic Bravais lattice. The
labeled points are P = a, + 3, + 3;, @ = 2a,,
R=a, +a5,andS = —a; + a, + a,.

N>

The face-centered cubic and body-centered cubic Bravais lattices are of great
importance, since an enormous variety of solids crystallize in these forms with an
atom (or ion) at each lattice site (see Tables 4.1 and 4.2). (The corresponding simple
cubic form, however, is very rare, the alpha phase of polonium being the only known
example among the elements under normal conditions.)
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Table 4.1

ELEMENTS WITH THE MONATOMIC FACE-CENTERED

CUBIC CRYSTAL STRUCTURE

ELEMENT a(A) ELEMENT  a(A) ELEMENT  a(A)
Ar 526 (42K) Ir 384 Pt 3.92
Ag 4.09 Kr 572(58K)  &-Pu 4.64
Al 4.05 La 530 Rh 3.80
Au 4.08 Ne 443 (4.2 K) Sc 4.54
Ca 5.58 Ni 3.52 Sr 6.08
Ce 5.16 Pb 4.95 Th 5.08
p-Co 3.55 Pd 3.89 Xe(58K) 6.20
Cu 3.61 Pr 5.16 Yb 5.49

Data in Tables 4.1 to 4.7 are from R. W. G. Wyckoff, Crystal Structures, 2nd ed.,
Interscience, New York, 1963. In most cases, the data are taken at about room tem-
perature and normal atmospheric pressure. For elements that exist in many forms the
stable room temperature form (or forms) is given. For more detailed information, more
precise lattice constants, and referencles. the Wyckoff work should be consulted.

/

Table 4.2

ELEMENTS WITH THE MONATOMIC BODY-CENTERED

CUBIC CRYSTAL STRUCTURE

ELEMENT  a(A) ELEMENT  a(A) ELEMENT  a (A)

Ba 5.02 Li 349 (718 K) Ta 3.31
Cr 2.88 Mo 3.15 Ti 3.88
Gs 6.05 (78 K) Na 423(5K) \'A 3.02
Fe 287 Nb 3.30 w 3.16
K 523(5K) Rb 559 (5K)

A NOTE ON USAGE

Although we have defined the term “Bravais lattice” to apply to a set of points, it
is also generally used to refer to the set of vectors joining any one of these points
to all the others. (Because the points are a Bravais lattice, this set of vectors does not
depend on which point is singled out as the origin.) Yet another usage comes from
the fact that any vector R determines a translation or displacement, in which everything
is moved bodily through space by a distance R in the direction of R. The term “Bravais
lattice” is also used to refer to the set of translations determined by the vectors, rather
than the vectors themselves. In practice it is always clear from the context whether
it is the points, the vectors, or the translations that are being referred to.”

T The more general use of the term provides an elegant definition of a Bravais lattice with the pre-
cision of definition (b) and the nonprejudicial nature of definition (a): A Bravais lattice is a discrete set
of vectors not all in a plane, closed under vector addition and subtraction (i.e., the sum and difference of
any two vectors in the set are also in the set).
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COORDINATION NUMBER

The points in a Bravais lattice that are closest to a given point are called its nearest
neighbors. Because of the periodic nature of a Bravais lattice, each point has the same
number of nearest neighbors. This number is thus a property of the lattice, and is
referred to as the coordination number of the lattice. A simple cubic lattice has co-
ordination number 6; a body-centered cubic lattice, 8; and a face-centered cubic
lattice, 12. The notion of a coordination number can be extended in the obvious way
to some simple arrays of points that are not Bravais lattices, provided that each point
in the array has the same number of nearest neighbors.

PRIMITIVE UNIT CELL

A volume of space that, when translated through all the vectors in a Bravais lattice,
just fills all of space without either overlapping itself or leaving voids is called a
primitive cell or primitive unit cell of the lattice.® There is no unique way of choosing
a primitive cell for a given Bravais lattice. Several possible choices of primitive cells
for a two-dimensional Bravais lattice are illustrated in Figure 4.10.

Figure 4.10
Several possible choices of primitive cell for a single two-dimensional Bravais lattice.

A primitive cell must contain precisely one lattice point (unless it is so positioned
that there are points on its surface). It follows that if n is the density of points in
the lattice® and v is the volume of the primitive cell, then nv = 1. Thus v = 1/n. Since

#  Translations of the primitive cell may possess common surface points; the nonoverlapping proviso
is only intended to prohibit overlapping regions of nonzero volume.

® The density n of Bravais lattice points need not, of course, be identical to the density of conduction
electrons in a metal. When the possibility of confusion is present, we shall specify the two densities with
different symb~"
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this result holds for any primitive cell, the volume of a primitive cell is independent
of the choice of cell.

It also follows from the definition of a primitive cell that, given any two primitive
cells of arbitrary shape, it is possible to cut the first up into pieces, which, when
translated through appropriate lattice vectors, can be reassembled to give the second.
This is illustrated in Figure 4.11.

Figure 4.11

Two possible primitive cells for a two-dimen-
sional Bravais lattice. The parallelogram cell
(shaded) is obviously primitive; additional
hexagonal cells are indicated to demonstrate
that the hexagonal cell is also primitive. The
parallelogram can be cut into pieces, which,
when translated through lattice vectors, re-
assemble to form the hexagon. The translations
for the four regions of the pE‘rallelogram are:
Region 1—CO; Region [1-BO; Region Il —
AO; Region IV—no translation.

The obvious primitive cell to associate with a particular set of primitive vectors,
a,, a,, a3, is the set of all points r of the form

r = X;a; + X223 + Xia; {4-6)

for all x; ranging continuously between Oand 1;ie., the parallelipiped spanned by the
three vectors a,, a,, and as. This choice has the disadvantage of not displaying the
full symmetry of the Bravais lattice. For example (Figure 4.12), the unit cell (4.6) for the
choice of primitive vectors (4.5) of the fcc Bravais lattice is an oblique parallelipiped,
which does not have the full cubic symmetry of the lattice in which it is embedded.
It is often important to work with cells that do have the full symmetry of their Bravais
lattice. There are two widely used solutions to this problem:

Figure 4.12

Primitive and conventional unit cells for the face-
centered cubic Bravais lattice. The conventional cell is
the large cube. The primitive cell is the figure with six
parallelogram faces. It has one quarter the volume of
the cube, and rather less symmetry.
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UNIT CELL; CONVENTIONAL UNIT CELL

One can fill space up with nonprimitive unit cells (known simply as unit cells or
conventional unit cells). A unit cell is a region that just fills space without any over-
lapping when translated through some subset of the vectors of a Bravais lattice. The
conventional unit cell is generally chosen to be bigger than the primitive cell and to
have the required symmetry. Thus one frequently describes the body-centered cubic
lattice in terms of a cubic unit cell (Figure 4.13) that is twice as large as a primitive
bee unit cell, and the face-centered cubic lattice in terms of a cubic unit cell (Figure
4.12) that has four times the volume of a primitive fcc unit cell. (That the conventional
cells are two and four times bigger than the primitive cells is easily seen by asking
how many lattice points the conventional cubic cell must contain when it is so placed
that no points are on its surface.) Numbers specifying the size of a unit cell (such as
the single number a in cubic crystals) are called lattice constants.

Figure 4.13

Primitive and conventional unit cells for the body-
centered cubic Bravais lattice. The primitive cell
(shaded) has half the volume of the conventional
cubic cell.

WIGNER-SEITZ PRIMITIVE CELL

One can always choose a primitive cell with the full symmetry of the Bravais lattice.
By far the most common such choice is the Wigner-Seitz cell. The Wigner-Seitz cell
about a lattice point is the region of space that is closer to that point than to any
other lattice point.!® Because of the translational symmetry of the Bravais lattice,
the Wigner-Seitz cell about any one lattice point must be taken into the Wigner-Seitz
cell about any other, when translated through the lattice vector that joins the two
points. Since any point in space has a unique lattice point, as its nearest neighbor'!
it will belong to the Wigner-Seitz cell of precisely one lattice point. It follows that a

10 Such a cell can be defined for any set of discrete points that do not necessarily form a Bravais
lattice. In this broader context the cell is known as a Voronoy polyhedron. In contrast to the Wigner-Seitz
cell, the structure and orientation of a general Voronoy polyhedron will depend on which point of the
array it encloses.

1t Except for points on the common surface of two or more Wigner-Seitz cells.
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Wigner-Seitz cell, when translated through all lattice vectors, will just fill space
without overlapping; i.e., the Wigner-Seitz cell is a primitive cell.

Since there is nothing in the definition of the Wigner-Seitz cell that refers to any
particular choice of primitive vectors, the Wigner-Seitz cell will be as symmetrical
as the Bravais lattice.!?

The Wigner-Seitz unit cell js illustrated for a two-dimensional Bravais lattice in
Figure 4.14 and for the three-dimensional body-centered cubic and face-centered
cubic Bravais lattices in Figures 4.15 and 4.16.

Note that the Wigner-Seitz unit cell about a lattice point can be constructed by
drawing lines connecting the point to all others’? in the lattice, bisecting each line

f ®  Figure 4.14
! The Wigner-Seitz cell for a two-dimensional
/ Bravais lattice. The six sides of the cell bisect
. 4{ . the lines joining the central points to its six
ff’\\ nearest neighboring points (shown as dashed
Ny lines). In two dimensions the Wigner-Seitz
/ .o cell is always a hexagon unless the lattice is
. ¢ e rectangular (sce Problem 4a).

Figure 4.15

The Wigner-Seitz cell for the body-centered cubic Bravais
lattice (a “truncated octahedron™). The surrounding cube is a
conventional body-centered cubic cell with a Jattice point at
its center and on each vertex. The hexagonal faces bisect the
lines joining the central point to the points on the vertices
(drawn as solid lines). The square faces biscect the lines joining
the central point to the central points in each of the six neigh-
boring cubic cells (not drawn). The hexagons are regular (sce
Problem 4d).

Figure 4.16

Wigner-Seitz cell for the face-centered cubic Bravais
lattice (a *‘rhombic dodecahedron™). The surrounding
cube is not the conventional cubic cell of Figure 4.12,
but one in which lattice points are at the center of the
cube and at the center of the 12 edges. Each of the 12
(congruent) faces is perpendicular to a line joining the
central point to a point on the center of an edge.

12 A precise definition of “as symmetrical as” is given in Chapter 7.
3 In practice only a fairly small number of nearby points actvally y  -lanes that bound the cell.
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with a plane, and taking the smallest polyhedron containing the point bounded by
these planes.

CRYSTAL STRUCTURE; LATTICE WITH A BASIS

A physical crystal can be described by giving its underlying Bravais lattice, together
with a description of the arrangement of atoms, molecules, ions, etc., within a
particular primitive cell. When emphasizing the difference between the abstract
pattern of points composing the Bravais lattice and an actual physical crystal’*
embodying the lattice, the technical term “crystal structure™ is used. A crystal structure
consists of identical copies of the same physical unit, called the basis, located at all
the points of a Bravais lattice (or, equivalently, translated through all the vectors
of a Bravais lattice). Sometimes the term lattice with a basis s used instcad. However,
“lattice with a basis” is also used in a more general sense to refer to what results
even when the basic unit is not a physical object or objects, but another set of points.
For example, the vertices of a two-dimensional honeycomb, though not a Bravais
lattice, can be represented as a two-dimensional triangular Bravais lattice’* with a
two-point basis (Figure 4.17). A crystal structure with a basis consisting of a single
atom or ion is often called a monatomic Bravais lattice.

Figure 4.17

The honeycomb net, drawn so as
to emphasize that it is a Bravais
lattice with a two-point basis. The
pairs of points joined by heavy
solid lines are identically placed in
the primitive cells (parallelograms)
of the underlying Bravais lattice.

One also can describe a Bravais lattice as a lattice with a basis by choosing a non-
primitive conventional unit cell. This is often done to emphasize the cubic symmetry
of the bee and fee Bravais lattices, which are then described respectively, as simple
cubic lattices spanned by a%, a¥, and az, with a two-point basis

0, 5&+5+12) (beo) @7

or a four-point basis

’ a a a
0, 5[2 + §) 5(? + 2), 5(2 +8)  (feo) 4.8)

14 But still idealized in being infinite in extent.
13 Span~- by two primitive vectors of equal length, making an angle of 60°.
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SOME IMPORTANT EXAMPLES OF CRYSTAL STRUCTURES AND
LATTICES WITH BASES

Diamond Structure

The diamond lattice'® (formed by the carbon atoms in a diamond crystal) consists of
two interpenetrating face-centered cubic Bravais lattices, displaced along the body
diagonal of the cubic cell by one quarter the length of the diagonal. It can be regarded
as a face-centered cubic lattice with the two-point basis 0 and (a/4)(X + ¥ + Z). The
coordination number is 4 (Figure 4.18). The diamond lattice is not a Bravais lattice,

Figurc 4.18
@ / | £ Conventional cubic cell of the diamond lattice.
| For clarity, sites corresponding to one of the
two interpenetrating face-centered cubic lattices
/&’ il are unshaded. (In the zincblende structure the

shaded sites are occupied by one kind of ion,
and the unshaded by another.) Nearest-neighbor
bonds have been drawn in. The four nearest
neighbors of each point form the vertices of a
regular tetrahedron.

because the environment of any point differs in orientation from the environments
of its nearest neighbors. Elements crystallizing in the diamond structure are given
in Table 4.3.

Table 4.3
ELEMENTS WITH THE DIAMOND CRYSTAL
STRUCTURE
ELEMENT CUBE SIDE a (A)
C (diamond) 3.57
Si 543
Ge 5.66
o-Sn (grey) 6.49

Hexagonal Close-Packed Structure

Though not a Bravais lattice, the hexagonal close-packed (hep) structure ranks in
importance with the body-centered cubic and face-centered cubic Bravais lattices;
about 30 elements crystallize in the hexagonal close-packed form (Table 4.4).

16 We use the word “lattice,” without qualifications, to refer either to a Bravais lattice or a latiice

with a basis.
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Table 4.4
ELEMENTS WITH THE HEXAGONAL CLOSE-PACKED CRYSTAL
STRUCTURE

ELEMENT  a(A) c cla ELEMENT a(A) ¢ . cla
Be 2.29 3.58 1.56 Os 2.74 4.32 1.58
Cd 2.98 5.62 1.89 Pr 3.67 5.92 1.61
Ce 3.65 596 1.63 Re 2.76 4.46 1.62
a-Co 2.51 4.07 1.62 Ru 2.70 428 1.59
Dy 3.59 5.65 1.57 Sc 3.31 527 1.59
Er 3.56 5.59 1.57 Tb 3.60 5.69 1.58
Gd 3.64 5.78 1.59 Ti 295 4.69 1.59
He(2K) 3.57 5.83 1.63 T1 3.46 5.53 1.60
Hf 3.20 5.06 1.58 Tm 3.54 5.55 1.57
Ho 3.58 5.62 1:57 ¥ \ 3.65 5.73 1.57
La 3.75 6.07 1.62 Zn 2.66 495 1.86
Lu 3.50 5.55 1.59 Zr 3.23 5.15 1.59
Mg 3.21 521 1.62 _ —

Nd 3.66 5.90 1.61 “Ideal” 1.63

Underlying the hep structure is a simple hexagonal Bravais lattice, given by stacking
two-dimensional triangular nets'? directly above each other (Figure 4.19). The direc-
tion of stacking (a3, below) is known as the c-axis. Three primitive vectors are

a
2

The first two generate a triangular lattice in the x-y plane, and the third stacks the
planes a distance ¢ above one another.

The hexagonal close-packed structure consists of two interpenetrating simple hex-
agonal Bravais lattices, displaced from one another by a, /3 + a,/3 + a3/2 (Figure
4.20). The name reflects the fact that close-packed hard spheres can be arranged in

3
a, = aR, a; = X+%j‘, a3 = c2. (4.9)

Y

la,l=la,l=a

Figure 4.19
The simple hexagonal Bravais lattice. Two-dimensional triangular nets (shown in inset) are
stacked directly abov- one another, a distance ¢ apart.
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Figure 4.20

The hexagonal close-packed crystal structure. It can
be viewed as two interpenetrating simple hexagonal
Bravais lattices, displaced vertically by a distance ¢/2
along the common e-axis, and displaced horizontally
so that the points of one lie directly above the centers
of the triangles formed by the points of the other.

such a structure. Consider stacking cannonballs (Figure 4.21), starting with a close-
packed triangular lattice as the first layer. The next layer is formed by placing a ball
in the depressions left in the center of every other triangle in the first layer, thereby
forming a second triangular layer, shifted with respect to the first. The third layer is
formed by placing balls in alternate depressions in the second layer, so that they lie
directly over the balls in the first layer. The fourth layer lies directly over the second,
and so on. The resulting lattice is hexagonal close-packed with the particular value
(see Problem 5):

c= \Ea = 1.63299a. (4.10)

Figure 4.21 =

View from above of the first two layers in a stack
of cannonballs. The first layer is arranged in a
plane triangular lattice. Balls in the second layer
are placed above alternate interstices in the first.
If balls in the third layer are placed directly
above those in the first, at sites of the type
shown in inset (a), balls in the fourth directly
above those in the second, etc., the resulting
structure will be close-packed hexagonal. If,
however, balls in the third layer are placed
directly above those interstices in the first that
were not covered by balls in the second, at sites
of the type shown in inset (b), balls in the fourth
layer placed directly above those in the first,
balls in the fifth directly above those in the
second, etc., the resulting structure will be face-
centered cubic (with the body diagonal of the
cube oriented vertically.)

Because, however, the symmetry of the hexagonal close-packed lattice is independent
of the ¢/a ratio, the name is not restricted to this case. The value c/a = \/8_,33 is
sometimes called “ideal,” and the truly close-packed structure, with the ideal value
of ¢/a, is known as an ideal hcp structure. Unless, however, the physical units in the
hep structure are actually close-packed spheres, there is no  :on why ¢/a should
be ideal (see Table 4.4).
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Note, as in the case of the diamond structure, that the hcp lattice is not a Bravais
lattice, because the orientation of the environment of a point varies from layer to
layer along the c-axis. Note also that, when viewed along the c-axis, the two types
of planes merge to form the two-dimensional honeycomb array of Figure 4.3, which
is not a Bravais lattice.

Other Close-Packing Possibilities

Note that the hep structure is not the only way to close-pack spheres. If the first two
layers are laid down as described above, but the third is placed in the other set of
depressions in the second—i.e., those lying above unused depressions in both the first
and second layers (see Figure 4.21}—and then the fourth layer is placed in depressions
in the third directly above the balls in the first, the fifth above the second, and so on,
one generates a Bravais lattice. This Bravais lattice turns out to be nothing but the
face-centered cubic lattice, with the cube diagonal perpendicular to the triangular
planes (Figures 4.22 and 4.23).

Figure 4.22
How to section the face-centered cubic Bravais lattice to get
the layers pictured in Figure 4.21.

Figure 4.23
A cubic section of some face-centered cubic close-packed
spheres.

There are infinitely many other close-packing arrangements, since each successive
layer can be placed in either of two positions. Only fcc close-packing gives a Bravais
lattice, and the fcc (...ABCABCABC...) and hcp (...ABABAB...) structures are by
far the most commonly encountered. Other close-packed structures are observed,
however. .ain rare earth metals, for example, take on a structure of the form
(...ABACABACABAC...).
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The Sodium Chloride Structure

We are forced to describe the hexagonal close-packed and diamond lattices as lattices
with bases by the intrinsic geometrical arrangement of the lattice points. A lattice
with a basis is also necessary, however, in describing crystal structures in which the
atoms or jons are located only at the points of a Bravais lattice, but in which the crystal
structure nevertheless lacks the full translational symmetry of the Bravais lattice
because more than one kind of atom or ion is present. For example, sodium chloride
(Figure 4.24) consists of equal numbers of sodium and chlorine ions placed at alternate
points of a simple cubic lattice, in such a way that each ion has six of the other kind
of ions as its nearest neighbors.!” This structure can be described as a face-centered
cubic Bravais lattice with a basis consisting of a sodium ion at 0 and a chlorine ion
at the center of the conventional cubsic cell, (a/2)(X + § + 2).

Figure 4.24

The sodium chleride structure. One type of ion is repre-
sented by black balls, the other type by white. The black
and white balls form interpenetrating fcc Iattices.

Table 4.5

SOME COMPOUNDS WITH THE SODIUM CHLORIDE STRUCTURE

crYSTAL  a(A) crystaL  a(A) crystAL  a(A)
LiF 402 RbF 5.64 Cas 5.69
LiCl 5.13 RbCl 6.58 CaSe 591
LiBr 5.50 RbBr 6.85 CaTe 6.34
Lil 6.00 Rbl 7.34 SrO 5.16
NaF 4.62 CsF 6.01 SrS 6.02
NaCl 5.64 AgF 492 SrSe 6.23
NaBr 597 AgCl 5.55 SrTe 6.47
Nal 6.47 AgBr 577 BaO 5.52
KF 5.35 MgO 421 BaS 6.39
KCl 6.29 MgS 5.20 BaSe 6.60
KBr 6.60 MgSe 5.45 BaTe 6.99
KI 7.07 CaO 4.81

The Cesium Chloride Structure

Similarly, cesium chloride (Figure 4.25) consists of equal numbers of cesium and
chlorine ions, placed at the points of a body-centered cubic lattice so that each ion

17 For examples see Table 4.5.
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has eight of the other kind as its nearest neighbors.'® The translational symmetry
of this structure is that of the simple cubic Bravais lattice, and it is described as a
simple cubic lattice with a basis consisting of a cesium ion at the origin 0 and a chlorine
ion at the cube center (a/2)(X + § + 2).

Figure 4.25

The cesium chloride structure. One type of ion is repre-
sented by black balls, the other type by white. The black
and white balls form interpenetrating simple cubic lattices.

Table 4.6
SOME COMPOUNDS WITH THE CESIUM CHLORIDE
STRUCTURE
_ CRYSTAL a(A) CRYSTAL a(A)
CsCl 4.12 TIC] 3.83
CsBr 4.29 TIBr 3.97
Csl 4.57 TII 4.20

The Zincblende Structure

Zincblende has equal numbers of zinc and sulfur ions distributed on a diamond lattice
so that each has four of the opposite kind as nearest neighbors (Figure 4.18). This
structure? is an example of a lattice with a basis, which must be so described both
because of the geometrical position of the ions and because two types of ions occur.

Table 4.7
SOME COMPOUNDS WITH THE ZINCBLENDE STRUCTURE

CRYSTAL a(A) crystAL  a(A) CrRYSTAL  a(A)
CuF 4.26 ZnsS 541 AlSb 6.13
CuCl 5.41 ZnSe 5.67 GaP 5.45
CuBr 5.69 ZnTe 6.09 GaAs 5.65
Cul 6.04 Cds 5.82 GaSb 6.12
Agl 6.47 CdTe 6.48 InP 5.87
BeS 4.85 HgS 5.85 InAs 6.04
BeSe 5.07 HgSe 6.08 InSb 6.48
BeTe 5.54 HgTe 6.43 Sic 4.35
MnS (red) 5.60 AlP 545

MnSe 5.82 AlAs 5.62

18 For examples see Table 4.6.
19 For exampl Table 4.7.
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OTHER ASPECTS OF CRYSTAL LATTICES

This chapter has concentrated on the description of the translational symmetry of
crystal lattices in real physical space. Two other aspects of periodic arrays will be
dealt with in subsequent chapters: in Chapter 5 we examine the consequences of
translational symmetry not in real space, but in the so-called reciprocal (or wave
vector) space, and in Chapter 7 we describe some features of the rotational symmetry
of crystal lattices.

PROBLEMS

1. In each of the following cases indicate whether the structure is a Bravais lattice. If it is, give
three primitive vectors; if it is not, describe it as a Bravais lattice with as small as possible a basis.

{a) Base-centered cubic (simple cubic with additional points in the centers of the horizontal
faces of the cubic cell).

(b) Side-centered cubic (simple cubic with additional points in the centers of the vertical
faces of the cubic cell).

(c) Edge-centered cubic (simple cubic with additional points at the midpoints of the lines
Jjoining nearest neighbors).

2. What is the Bravais lattice formed by all points with Cartesian coordinates (n,, n,, na) if:
(a) The n, are either all even or all odd?
{b) The sum of the n; is required to be even?

3. Show that the angle between any two of the lines (bonds) joining a site of the diamond lattice
to its four nearest neighbors is cos™* (—1/3) = 109°28".

4, (a) Prove that the Wigner-Seitz cell for any two-dimensional Bravais Iattice is either a
hexagon or a rectangle.

(b) Show that the ratio of the lengths of the diagonals of each parallelogram face of the
Wigner-Seitz cell for the face-centered cubic lattice (Figure 4.16) is \/i:l.

() Show that every edge of the polyhedron bounding the Wigner-Seitz cell of the body-
centered cubic lattice (Figure 4.15) is ,/2/4 times the length of the conventional cubic cell.

(d) Prove that the hexagonal faces of the bcc Wigner-Seitz cell are all regular hexagons.
(Note that the axis perpendicular to a hexagonal face passing through its center has only threefold
symmetry, so this symmetry alone is not gnough.)

5. (a) Prove that the ideal ¢/a ratio for the hexagonal close-packed structure is \_/EE = 1.633.

(b) Sodium transforms from bee to hep at about 23K (the “martensitic™ transformation).
Assuming that the density remains fixed through this transition, find the lattice constant a of
the hexagonal phase, given that @ = 4.23 A in the cubic phase and that the c/a ratio is indistin-
guishable from its ideal value.

6. The face-centered cubiCis the most dense and the simple cubic is the least dense of the three
cubic Bravais lattices. The diamond structure is less dense than any of these. One measure of
this is that the coordination numbers are: fec, 12; bee, 8; sc. 6; diamond, 4. Another is the following:
Suppose identical solid spheres are distributed through space in st way that their centers
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lie on the points of each of these four structures, and spheres on neighboring points just touch.
without overlapping. (Such an arrangement of spheres is called a close-packing arrangement.)
Assuming that the spheres have unit density, show that the density of a set of close-packed spheres
on each of the four structures (the “packing fraction™) is:

fee: \/im'ﬁ =074
bec: \/ 3n/8 = 0.68
sC: n/6 = 0.52

diamond: /37/16 = 0.34.

7. Let N, be the number of nth nearest neighbors of a given Bravais lattice point (e.g.. in a simple
cubic Bravais lattice N, = 6, N; = 12, etc.). Let r, be the distance to the nth nearest neighbor
expressed as a multiple of the nearest neighbor distance (e.g., in a simple cubic Bravais lattice
ri = 1,r, = /2 = 1.414). Make a table of N, and r, for n = 1, .., 6 for the fce, bee, and sc
Bravais lattices.

8. (a) Given a Bravais lattice, let a, be a vector joining a particular point P to one of its nearest
neighbors. Let P be a lattice point not on the line through P in the direction of a, that is as
close to the line as any other lattice point, and let a, join P to P'. Let P” be a lattice point not
on the plane through P determined by a, and a, that is as close to the plane as any other lattice
point, and let a; join P to P". Prove that a,, a,. and a3 are a set of primitive vectors for the
Bravais lattice.

(b) Prove that a Bravais lattice can be defined as a discrete set of vectors, not all in a plane.
closed under addition and subtraction (as described on page 70).



